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Topic
Intro, schedule, and logistics
Applications of visual analytics, data types
Data sources and preparation
Data reduction, similarity & distance, data augmentation
Dimension reduction
Introduction to D3

Visual communication using infographics

Visual perception and cognition

Visual design and aesthetic

Cluster analysis

High-dimensional data, dimensionality reduction
Principal component analysis (PCA)

Visualization of spatial data: volume visualization intro
Introduction to GPU programming

Visualization of spatial data: raycasting, transfer functions
[llumination and isosurface rendering

Midterm

Scientific visualization

Non-photorealistic and illustrative rendering

Midterm discussion

Principles of interaction

Visual analytics and the visual sense making process
Visualization of graphs and hierarchies

Visualization of time-varying and streaming data

Maps

Memorable visualizations, visual embellishments
Evaluation and user studies

Narrative visualization, storytelling, data journalism, XAl

Project 1 out

Project 2 out

Project 3 out

Project 4 out

Project 5 out

Projects



FINDING THE NEEDLE —

CLUSTER ANALYSIS

Data summarization
» data reduction
» cluster centers, shapes, and statistics

Customer segmentation
= collaborative filtering

Social network analysis
= find similar groups of friends (communities)

Precursor to other analysis
= use as a preprocessing step for classification and outlier detection



ATTRIBUTE SELECTION

With 1,000s of attributes (dimensions) which ones are
relevant and which one are not?
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ATTRIBUTE SELECTION

How to measure attribute "worthiness”
= use entropy

Entropy
= originates in thermodynamics
= measures lack of order or predictability

entropy

Entropy in statistics and information theory
= has avalue of 1 for uniform distributions (not predictable)
= knowing the value has a lot of information (high surprise)
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a value of 0 for a constant value (fully predicable)

= knowing the value has zero information (low surprise)



ENTROPY

Assume m bins, 1<i<m: g-= —i[pilﬂg(pt‘) + (1 — pi)log(1 — pi)).
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Algorithm:

= start with all attributes and compute distance entropy
= greedily eliminate attributes that reduce the entropy the most
= stop when entropy no longer reduces or even increases



HIERARCHICAL CLUSTERING
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Two options:
top down (divisive)
bottom up (agglomerative)



BOTTOM-UP AGGLOMERATIVE METHODS

Algorithm Agglomerative Merge(Data: D) '.".-'.f-__"
begin :/ '\
Initialize n x n distance matrix M using D; #, 0 00®
repeat ¢ .
Pick closest pair of clusters i and j using M; ..ﬁ/ \.i. _,‘./\

Merge clusters ¢ and J; | AVEERVAVERRVAVERRVAN

Delete rows/columns ¢ and j from M and create
a new row and column for newly merged cluster;

Update the entries of new row and column of M; f luster 8 :.
until termination eriterion; ,
return current merged cluster set;: L

end .

How to merge? ‘

-
. e Cluster A



- Simple linkage - Average linkage - Complete linkage

MERGE @

CRITERIA

Single linkage
= distance = minimum distance between all m; - m; pairs of objects
= joins the closest pair

Worst (complete) linkage
= distance = maximum distance between all m; - m; pairs of objects
= joins the pair furthest apart

Group-average linkage
= distance = average distance between all object pairs in the groups

Other methods:

= closest centroid, variance-minimization, Ward’s method



COMPARISON

Centroid-based methods tend to merge large clusters

Single linkage method can merge chains of closely related
points to discover clusters of arbitrary shape

= but can also (inappropriately) merge two unrelated clusters, when
the chaining is caused by noisy points between two clusters
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COMPARISON

Complete (worst-case) linkage method tends to create
spherical clusters with similar diameter
= will break up the larger clusters into smaller spheres

= also gives too much importance to data points at the noisy
fringes of a cluster

The group average, variance, and Ward’s methods are more
robust to noise due to the use of multiple linkages in the
distance computation

Hierarchical methods are sensitive to a small number of
mistakes made during the merging process

= can be due to noise

= no way to undo these mistakes



Highly-cited density-based hierarchical clustering algorithm
(Ester et al. 1996)
= clusters are defined as density-connected sets
» epsilon-distance neighbor criterion (Eps)
Neos(P) = {q €D | dist(p,q) < Eps}
=  minimum point cluster membership and core point (MinPts)
INgos(9)] > MinPts
= notions of density-connected & density-reachable (direct, indirect)

= apoint p is directly density-reachable from a point g wrt. Eps,
MinPts if

P € Ng,i(q) and
INEos(9@)] > MinPts (core point condition)
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PROBABILISTIC EXTENSION TO K-MEANS
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Different cluster analysis results on "mouse"” data set:

Original Data k-Means Clustering
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MAHALANOBIS DISTANCE

The distance between a point P and a distribution D

measures how many standard deviations P
is away from the mean of D

S is the covariance matrix of the distribution D

the Mahanalobis distance D,, of a point x
to a cluster center p is

Da(x) = \/(z — p) TS~z — p),
x and p are N-dimensional vectors

S is a NxN matrix

the outcome D,,(x) is a single-dimensional
number
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PROBABILISTIC CLUSTERING

Better match for point distributions
= overlapping clusters are now possible
»  better match with real world?
=  Gaussian mixtures .

Need a probabilistic algorithm X
= Expectation-Maximization

E-Step
Update
Variables

M-Step
Update
Hypothesis




EM Algorithm (Mixture Model)

probability that d; is In class ¢;
e Initialize K cluster centers (Mahanalobis distance of d; to ¢

* |terate between two steps
— EXpectation step: assign n points to m clusters/classes

P(d ec,)=w, Pr(d |ck)/Zw Pr(d,|c;)
ZPr(d o

W, = - = probability of class c,

— Maximation step: estimate model parameters

n d.P(d, ec,)
ZZP(d ec,)
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Iteration 1

The cluster
means are
randomly
assigned
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Iteration 2

| ]
ean Likelihood =-12.501 213295068318

IGauasMix "I RingF’tsl RandomPts | ClearPts InitKerneIs“S leruHStep j




Iteration 5

flean Likelihood =-41.87939633830106

pA0358483418 34
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Iteration 25

hean Likelihood =-11.1 34522888 6774
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